

Reg. No.:

Name :

Seventh Semester B.Tech. Degree Examination, November 2013 (2008 Scheme)

08.735 : OPTOELECTRONIC DEVICES (TA)

Time: 3 Hours

Max. Marks: 100

Answer all questions. Each question carries 4 marks.

- 1. Compute radiative recombination time (τ_r) in GaAs having $n_o = 10^{14} cm^{-3}$ under high injection of $10^{18} cm^{-3}$. Given that $B_r = 7 \times 10^{-10} cm^3/s$.
- 2. What do you understand by Stark Effect?
- 3. Draw the noise equivalent circuit of a photodiode and name the components.
- Explain 'Avalanche multiplication' and write an expression for Avalanche multiplication coefficient.
- 5. Explain energy band diagram of a Schottky barrier cell.
- 6. τ_r and τ_{nr} (Radiative and non radiative life times) of a LED are 60 ns and 100 ns respectively. Compute total recombination life time. Given that peak emission wavelength is 0.87 μm at a drive current of 40 mA.
- 7. Draw the structure of a planar LED.
- 8. Write down threshold condition for Laser Oscillation.
- The total efficiency of an injection laser with a GaAs active region is 18%. Voltage
 applied to the device is 2.5 V and band gap energy is 1.43 eV. Calculate external
 power efficiency of the device.
- 10. Write notes on Rare-Earth Doped Lasers.

PART-II

Answer any two questions from each Module. Each question carries 10 marks.

Module - I

11.	Explain different types of absorption of photons in semiconductors (with neat	
	figures).	10
12.	a) Derive the relation between quantum efficiency and responsivity of a photo	
	diode.	5
	b) A photo diode has a quantum efficiency of 65% when photons of energy 1.5×10^{-19} J are incident on it.	
	i) At what wavelength is the photo diode operating?	
	ii) Compute the incident optical power required to obtain a photo current of	
	2.5 μA at this wavelength.	5
13.	Explain the structure of SAGM APD. How grading improves the performance?	10
	an 00 f has en 00 ses (CE) a to ress Module – II m non bes swimps (F) , una	
14.	a) Define injection efficiency and recombination efficiency of a light emitting	
	diode with sufficient Mathematical support.	3
	b) Explain the structures of Heterojunction LED and surface emitting LED.	7
15.	a) What is image force lowering effect in MSM photodiode? Explain with sketches.	5
	b) What is the effect of bias on barrier heights in a triangular barrier diode?	5
	Describe the principle and operation of Electro-optic and acousto-optic	
	modulators.	10

Module - III

- 17. a) Compare the ratio of threshold current densities at 20°C and 80°C for AlGaAs injection laser with T₀ = 180 K.
 4 b) Write notes on Axial and Transverse Laser Modes.
 18. a) Derive an expression for gain in a two level lasing medium.
 5 b) Calculate the number of modes of an AlGaAs laser supported by the gain spectrum which has a bandwidth of 6nm. Cavity length of the laser is 200 μm and emission wavelength is 800 nm.
- 19. Write notes on:
 - a) DFB lasers.
 - b) Quantum well lasers.

Ę

5